Roll No. Total No. of Pages : 02

Total No. of Questions: 09

B.Tech.(AE) (2011 Onwards) (Sem.-3)
APPLIED THERMODYNAMICS

Subject Code: BTAE-302 Paper ID: [A1115]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1) Write briefly:

- a) Represent isothermal, isentropic and polytropic compression process on P-V diagram.
- b) Write formula for indicated power for single acting and double acting reciprocating compressor.
- c) What is effect of clearance on volumetric efficiency in reciprocating compressor?
- d) What is function of diffuser in centrifugal compressor?
- e) For which requirements, centrifugal compressors are used?
- f) Define degree of reaction in axial flow compressors.
- g) Draw ideal and actual cycle for gas turbine on T-S diagram.
- h) Define cycle air rate in gas turbine.
- i) Write two advantages of jet propulsion system.
- j) Write basic difference between turbojet and turboprop.

SECTION-B

- 2) Explain construction and operation of positive displacement rotary compressor with help of neat sketch.
- 3) Define slip factor and derive expression for the same.
- 4) Describe stalling in axial flow compressors. Does it affect axi-symmetric flow in compressor?
- 5) A turbojet aircraft flies with a velocity of 300m/s at an altitude where the air is at 0.35 bar and -40°C. The compressor has a pressure ratio of 10, and the temperature of gases at the turbine inlet is 1100°C. The air enters the compressor at a rate of 50 kg/s. Estimate
 - (a) the temperature and pressure of the gases at the turbine exit,
 - (b) the velocity of gases at the nozzle exit, and
 - (c) the propulsive efficiency of the cycle.
- 6) Discuss centrifugal compressor characteristic curves.

SECTION-C

- A single-stage double acting air compressor has a stroke volume of $0.056~\text{m}^3$ and a clearance volume of $0.0028~\text{m}^3$. Find the volumetric efficiency and the mass of air delivered per hour when the speed is 200 rev/min, the suction pressure and temperature 0.9 bar and 50 °C, respectively, and the delivery pressure 6 bar. Determine also the indicated power to drive the compressor. Assume the law of compression and re-expansion is $pV^{1.35}$ = constant.
- 8) A centrifugal compressor compresses 30 kg of air per second at a rotational speed of 15000 *rpm*. The air enters the compressor axially, and the conditions at the exit sections are radius-0.3m; relative velocity of air at the tip-100m/s at an angle of 80°C.
 - Find the torque and power required to drive the compressor and also the ideal head developed.
- 9) Prove that the efficiency corresponding to the maximum work done in a Brayton cycle is given by the relation:

$$\eta_{w\max} = 1 - \frac{1}{\sqrt{t}}$$

where *t* is the ratio of the maximum and minimum temperature of the cycle. A gas turbine operating on Brayton cycle between 27 °C and 827 °C. Determine the maximum network per kg and cycle efficiency.